PCB Integrated Inductors for Low Power DC/DC Converter

نویسندگان

  • Matthias Ludwig
  • Maeve Duffy
  • Seán Cian Ó Mathùna
چکیده

This paper discusses the use of printed circuit board (PCB) integrated inductors for low power dc/dc buck converters. Coreless, magnetic plates and closed core structures are compared in terms of achievable inductance, power handling and efficiency in a footprint of 10 10mm. The magnetic layers consist of electroplated NiFe, so that the process is fully compatible with standard PCB process. Analytic and finite element method (FEM) methods are applied to predict inductor performance for typical current waveforms encountered in a buck converter. Conventional magnetic design procedures are applied to define optimum winding and core structures for typical inductor specifications. A 4.7 H PCB integrated inductor with dc current handling of up to 500 mA is presented. This inductor is employed in a 1.5 W buck converter using a commercial control integrated circuit (IC). The footprint of the entire converter measures 10 10 mm and is built on top of the integrated inductor to demonstrate the concept of integrated passives in power electronic circuits to achieve ultra flat and compact converter solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Losses in Monolithic Buck DC-DC Converter Designed on CMOS 0.35 μm Technology

This paper includes investigations of power losses in monolithic buck dc-dc converter designed with Cadence on CMOS 0.35 μm process. Input voltage of the designed circuit is equal to 3.6 V and output voltage is regulated to 1.2 V. Evaluated and estimated are power dissipations in the MOS transistor, filter inductor and filter capacitor of the buck converter. Investigated and compared are losses...

متن کامل

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...

متن کامل

An Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation

In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...

متن کامل

Through-Silicon-Via Inductor based DC-DC Converters: The Marriage of the Princess and the Dragon

There has been a tremendous research effort in recent years to move DC-DC converters on chip for enhanced performance. However, a major limiting factor to implement on-chip inductive DC-DC converters is the large area overhead induced by spiral inductors. Towards this, we propose to use through-silicon-vias (TSVs), a critical enabling technique in three-dimensional (3D) integrated systems, to i...

متن کامل

Interleaved DC-DC Boost Converter with SiC Devices and Low-Capacitive Inductors

This paper describes a four-leg interleaved DC-DC boost converter built on the basis of Silicon Carbide (SiC) devices (Metal-Oxide Semiconductor Field-Effect Transistors—MOSFETs and Schottky diodes) and improved, low-capacitive magnetic components. A combination of wide-bandgap semiconductors capable of operating at elevated switching frequencies and an interleaving technique brings substantial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001